
INTRODUCTION

To date, the static Q-angle (QA) remains among the main parameters used to describe lower body 
alignment and assess factors contributing to patellofemoral pain (PFP)1-5.  
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ABSTRACT – Objective: The measurement of Q-angle lacks standardization, with the potential risk of failing to 
detect clinically relevant findings and misjudgments on types of interventions needed in patellofemoral pathologies. 
The aim of this study was to implement a machine-learning model for the accurate and reliable measurement of 
Q-angle directly from radiographs.

Materials and Methods: A total of 187 radiographs (of which approximately 50 belonging to pediatric patients) 
were manually annotated for the anterior superior iliac spine (ASIS), the center of the patella, and the tibial tuber-
osity and then enhanced by means of different image preprocessing techniques. Eighty-five percent of X-rays were 
used for training and 15% for testing and validation. Prediction performance was tested using the full-leg radiograph 
(WLR) and the bounding boxes (BB) models in terms of mean squared error compared to the ground truth (key 
points and Q-angles determined by the operator).

Results: Overall, mean prediction errors were the smallest for the patella and ASIS and the highest for the tibial tuber-
osity. The BB model yielded smaller mean errors in the prediction of all points and Q-angle compared to WLR (except for 
tibial tuberosity, which was comparable) and showed the highest agreement with ground truth, with no bias for Q-angle.

Conclusions: This proof-of-concept study supports the use of an AI-driven automatic algorithm to identify the 
key points for measuring Q angle directly from the patient’s radiographs. Results demonstrate the highest reliability 
with the bounding box approach and the algorithm's ability to correctly identify key points across a heterogeneous 
patient population.
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In general, it is accepted that Q-values exceeding 20 degrees are more often associated with mis-
alignment of the patellar joint and knee extensor dysfunction. However, there are no exact threshold 
values to discriminate a pathological condition in symptomatic vs. asymptomatic patients1,2,5-7.

Values reported across the literature8 are heterogeneous, and there is no standardized measure-
ment procedure. This leads to large intra- and inter-operator variability. Importantly, an inaccurate 
Q-angle measurement may fail to detect clinically relevant findings and entail the potential for mis-
judgments about the types of interventions needed9-13. 

Several studies13,14 have attempted to increase Q-angle reliability by standardizing measurement 
with either goniometric or imaging assessments, which additionally provide information on possible 
intra-articular, articular cartilage, soft tissue, and osseous pathology plus an additional measurement 
of tubercle lateralization13-15. Yet, large-scale implementation is slow, given the limited availability and 
costly access to diagnostic imaging.

It is likely that innovation could be achieved through artificial intelligence. Many studies16 in the 
field of orthopedics have demonstrated how machine learning (ML) can be trained to detect very 
subtle patterns, thanks to its potential to handle data that is incomplete, unbalanced, complex, and/
or has numerous variables with complex interactions. In many cases, ML models have even been 
demonstrated to outperform clinicians in the interpretation of radiographs in areas such as fracture 
assessment and to be capable of elaborating outcomes in text formats similar to medical reporting17.  

However, the application of machine learning (ML) to Q-angle measurement has remained unex-
plored. Accordingly, we aimed to develop and test an automatized model that accurately and repro-
ducibly predicts the Q-angle directly from the patient’s radiographs. Specifically, the present work 
provides a proof-of-concept, discussing the feasibility of a model based on ML and employing the 
latest version of the real-time You Only Look Once (YOLO) image detection system.

MATERIALS AND METHODS

The present study was based on a pool of radiographic images, which was used to train an algorithm 
for automatic Q-angle measurement, as described below.

Study Sample

The study was based on a dataset of radiographic imaging from patients attending the Department of 
Orthopaedics of our tertiary referral orthopedic institution in northern Italy. 

Radiographs were from a representative pool of patients being referred to surgery for growth pa-
thology or hip and knee arthrosis. The age range was from 3 to 88 years, with a mean of 38 years (±SD 
21.40) admitted for conditions including growth anomalies, malalignment, and arthrosis. One-third 
of the patients were pediatric (referred for growth pathologies), while the remaining two-thirds were 
over 50 years of age (referred for arthrosis pathology).

The dataset included a total of 187 radiographs. The images were randomly divided (split ratio 
85:15) into training images and test images to achieve a reasonable representativeness of the training 
set. Thus, of the total sample, 159 (85%) were used for training (training X-rays) and 28 (15%) (testing 
X-rays), of which 11 (40%) were used for validation and 17 (60%) were used for testing. 

The inclusion of the radiographs in the study was bound to the patient’s written consent for the 
use of their data for scientific purposes in anonymized form upon admission to the radiological ward. 
Since the study exclusively involved anonymized radiographs, it did not require approval by the Ethics 
Committee board.

Data Annotation and Preparation

Radiograph annotation and collection

Full-length radiographs of the lower limbs in a standing bipedal position were performed in accor-
dance with routine clinical practice. Each radiograph had been manually annotated by the orthope-
dic surgeon for the reference points used for Q-angle measurement, i.e., the anterior superior iliac 
spine (ASIS), the center of the patella and the middle third of the tibial tuberosity (TT). The ASIS was 



3 AI IN Q-ANGLE MEASUREMENT

identified as the superoanterior margin of the iliac crest, visible on X-ray as the protuberance where 
the iliac crest terminates anteriorly. The TT was identified as the middle third of the proximal tibial 
metaphysis. The center of the patella was identified as the center of the X-ray of the patella. Such 
points were then uploaded to a software (OsiriX platform by DICOM Viewer)18 commonly used in the 
standard clinical setting for the Q-angle calculation.

All radiographs underwent initial quality control screening for the contrast of radiological imag-
ing and visibility of landmarks of interest (ASIS, center of the patella, and anterior tibial tuberosity). 
Those with low-quality or unreadable scans (radiological artifacts, presence of fixation devices) that 
prevented the visualization of the key radiological landmarks were discarded.

The original manual annotations performed on the radiographs served as ground truth for training 
the model and evaluating its outcome. 

Image preprocessing

In order to increase model performance, we tested three different image preprocessing techniques. 
Specifically:
• Contrast Limited Adaptive Histogram Equalization (CLAHE), which improves the contrast of images 

by limiting contrast amplification in homogeneous areas, which is particularly effective for medical 
images19,20;

• Noise reduction by means of advanced denoising techniques suitable for medical images, i.e., 
non-local means denoising, which preserves fine details while reducing noise; 

• Edge detection, used to enhance the visibility of anatomical structures – crucial for accurately 
identifying key points in radiographs.

Model Design

Framework

The research question was approached through a machine learning algorithm (ML) as a coordinate 
regression problem (see Supplementary File 1). The objective was to predict the coordinates of key 
points from the radiographic images, allowing subsequent calculation of the Q-angle. 

Given the limited number of available images and the similarity of this task to pose detection, we 
selected the You Only Look Once, version 8 (YOLOv8) object detection and image segmentation mod-
el as a basis for our work. YOLOv8 is a deep learning model optimized for real-time object detection 
and key point prediction21-23. The model divides the input image into a grid and predicts bounding 
boxes along with associated class probabilities for each grid cell. For pose estimation, it predicts the 
coordinates of key points within these bounding boxes. In particular, the YOLOv8 pose is specifically 
designed for joint detection and 2D multi-person pose estimation without the use of heatmaps. This 
approach allows end-to-end training and optimization of the object key-point similarity metric, di-
rectly aligning the training objective with the evaluation metric. 

Training

The YOLOv8 model was initially trained on a large-scale object detection dataset, the Common Ob-
jects in Context (COCO) dataset, and used to initialize the model for the specific study24,25. The model 
was then fine-tuned on the annotated dataset to adapt it to the specific targets and images involved 
in Q-angle measurement. All models were trained for a maximum of 500 epochs. Based on the valida-
tion set error, early stopping with patience of 100 epochs was used.

Data augmentation

The dataset used to train the models was extended using data augmentation techniques to increase 
its size and representativeness. Specifically, we applied a series of transformations to the original 
images (flipping, rotating, scaling, cropping, and changing the brightness and contrast) to expose the 

http://www.jointsjournal.org/wp-content/uploads/sites/9/2025/01/Supplementary-File-1-1.pdf
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model to a broader spectrum of potential real-life scenarios. This helped the model enhance gener-
alization performance when shifting from the training data to unseen data, reduce overfitting, and 
improve robustness and performance. 

During image transformation, all artifacts or distortions that could mislead the model during the 
image transformations and hinder its learning process were minimized. 

The transformations carried out were as follows: random horizontal flipping (i.e., flipping the im-
ages horizontally with a probability of 0.5), mosaic augmentation (i.e., combining four images into 
one to allow learning in context from different parts of the images), and color augmentations (i.e., 
adjusting brightness, contrast, and saturation to make the model invariant to different acquisition 
conditions).

Creation of the model

A first model was developed to process the Whole-Leg Radiograph (WLR), analyzing the entire pelvis 
and both knees simultaneously. The model’s output was an approximate identification of three key 
points of interest (ASIS, center patella, and tibial tuberosity) for both limbs (Figure 1).

The next step involved generating three bounding boxes (BB) for each of the X-rays, each 800x800 
pixels in size, centered on the approximate positions originally predicted by the first model on WLR. 
These boxes were used to train three specialized prediction models: one for the ASIS, one for the pa-
tella, and one for the tibial tuberosity. The three models were then used to fine-tune the prediction 
of the relevant key points on the X-ray. These points were finally used to calculate the Q-angle for 
both limbs.

Model evaluation metrics

Model performance was evaluated on the test set using the mean error, which assessed the accuracy 
of key-point predictions and the Q-angle compared to the ground-truth measurements. Mean abso-
lute error was measured in linear difference (mm), which expresses deviation in space (i.e., medial, 
lateral, distal).

Figure 1. Steps leading to the development of the AI-based model.
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RESULTS

The algorithm identified all reference points (axis, patella, and tibial tuberosity) using both the WLR 
and the BB methods. The position of the reference points obtained by the operator (ground truth) 
and by the algorithm were compared in terms of distance mean error on prediction and standard 
deviation (SD). In general, the BB method yielded lower mean errors for all measurement points 
compared to the WLR, except for the left patella, which featured similar mean errors from both 
WLR and BB.

As for the values obtained with BB, the shortest distances between operator and algorithm-iden-
tified points were observed for the patella, being 4.3 (SD±2.8) and 4.0 (SD±2.0) on the right and left 
knee, respectively. In contrast, the greatest distance was for tibial tuberosity, with mean errors being 
10.3 (SD±7.6) and 8.5 (SD±5.7) on the right and left knee, respectively.

The prediction of mean errors (±SD) observed for WLR and BB models compared to the ground 
truth are reported in Table 1. 

As Q-angle measurements based on operator and algorithm-identified reference points, those 
measured by BB presented the smallest mean absolute error (MAE) for both legs. Table 2 reports the 
mean absolute errors (±SD) of the Q-angle as compared to ground truth data.

The degree of agreement for Q-angle values based on the key points measured by WLR and BB 
against ground truth was assessed by Bland-Altman plots. The WLR approach had a 95% CI ranging 
from -10 to 16, with a bias of approximately +3 degrees (Figure 2), whereas the BB approach had a 
95% CI ranging from -8 to +8, without bias (Figure 3). The higher agreement with BB indicates greater 
reliability for Q-angle measurement. 

Finally, the validation step identified the cases yielding the best and worst agreement of the pre-
dicted key points compared to ground truth. Figure 4 is a selection of representative cases.

Table 1. Mean errors from whole leg radiograph and bounding box models.

                   WLR                   BB

Key point Side Mean error [mm] SD Mean error [mm] SD

ASIS R 9.7 4.2 5.9 4.7
 L 8.6 6.3 6.0 4.1

Center of patella R 6.6 4.1 4.3 2.8
 L 8.5 4.8 4.0 2.0

Tibial tuberosity R 11.5 5.6 10.3 7.6
 L 11.8 6.9 8.5 5.7

ASIS: Anterior Superior Iliac Spine; BB: bounding box; L: left; SD: standard deviation; R: right; WLR: whole leg radio-
graph.

Table 2. Q-angles measured for the right and left leg separately and for both legs.

                               WLR                          BB

   Mean absolute SD Mean absolute SD
Q-angle Side error [mm] [mm] error [mm] [mm]

Q-angle  R 4.7 5.1 2.6 2.6

Q-angle  L 5.5 4.8 3.6 2.9

Q-angle  Both 5.1 5.0 3.1 2.8

BB: bounding box; L: left; SD: standard deviation; R: right; WLR: whole leg radiograph.
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DISCUSSION

The present study proposes a proof of concept for creating an automated model to measure the Q-an-
gle directly from the patient’s radiographs. According to the authors’ knowledge, this study is the first 
to report an AI application for the presented objective and highlights its feasibility and strengths, as 
well as the critical aspects to be addressed in future developments.

Figure 2. Bland-Altman plot for the whole leg radiograph approach for the approximate key points.

Figure 3. Bland-Altman plot for the bounding box approach for the fine-tuned key points.
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The idea was developed considering the widespread use of 2D radiographic imaging, which is the 
most used in current clinical practice due to its relatively low costs compared to those of more sophis-
ticated and less accessible 3D imaging diagnostics.

The model was built with the support of machine learning trained on a dataset of radiographic 
imaging with manual annotations by an orthopedic surgeon for the ASIS, the center of the patella, 
and the middle third of the TT. With such data as ground truth, we employed a highly performant 
real-time object detection and image segmentation model, YOLOv8, and assessed two approaches, 
the WLR and BB.

Overall, the AI prediction of key points and Q-angle values were coherent with the ground truth 
and were qualitatively satisfactory for the aim set for the proof-of-concept. 

Regarding the Q-angle assessment, BB gave the highest agreement with ground truth with no bias, 
thus proving its higher reliability. Regarding predicted reference points, BB produced smaller mean 
distance errors compared to the WLR approach, except for the tibial tuberosity, which resulted in 
errors comparable to those of both approaches. The mean error for ASIS and patella was less than 
5 mm. The mean errors in identification of the reference point for the left leg ranged from 4.3 mm 
(±2.8) to 10.3 mm (±7.3), with a corresponding mean absolute error for the Q-angle being 2.6 mm 
(±2.6). Thus, the errors were tolerable and not associated with relevant errors in Q-angle.  

These results are also in line with previous studies in the literature addressing Q-angle method-
ology and accuracy of measurements. One study worth mentioning is that by France and Nester26, 
which assessed the effect of error on Q-angle linear measurements. Their results showed that the 
same range of errors may have different effects in terms of Q-angle based on where these errors 
are located. Errors between 1 and 5 mm in the medial/lateral location of the center of the patella 
produced changes in the Q-angle between 1.13 degrees and 5.53 degrees. Errors between 1 and 5 

Figure 4. Samples of best and worst agreement compared to ground truth and the predicted key points. Red 
dots show the prediction by algorithm, green dots: ground truth. A, The sample featuring the best agreement. 
B-D, samples yielding the highest discrepancy between manual and predicted key points are reported. Specif-
ically, (B) a patient featuring bone structure suggestive of dwarfism; (C) tall patient with femoral length at the 
upper limits; (D), a patient standing in tilting position. Here, contrast of images was enhanced to make points 
more visible.



8 AI IN Q-ANGLE MEASUREMENT

mm in the medial/lateral location of the tibial tuberosity produced changes in the quadriceps angle 
between 1.02 and 5.18 degrees26. In our study, the mean errors for BB were about 4 mm for the 
center of the patella and about 6 mm for the ASIS and were not associated with any relevant errors 
in the Q-angle. 

Q-Angle Measurement Values and Standard Errors with Traditional Measurements

The potential gain in accuracy by introducing AI to Q-angle measurement may perhaps be appre-
ciated by reviewing previous literature of studies that aimed to improve the reliability of Q-angle 
measurement by traditional techniques. Weiss et al9 proposed a repeated-measures design, intra-
tester reliability study using a goniometric assessment on healthy adults. They concluded that the 
measure was reliable only with patient groups featuring specific characteristics, such as younger 
age and leaner body composition. Specifically, intraclass correlation coefficient (ICC) (SEM) values 
were for all subjects 0.88 (1.0°), men 0.77 (1.0°), and women 0.85 (1.0°). Moreover, relevant differ-
ences in Q-angles were found only with a 3° difference9. 

Chevidikunnana et al27 compared QA measurement based on goniometer and radiographic anno-
tation to understand whether these methods featured comparable accuracy and could be used in-
terchangeably27. For goniometer-based QA measurement, the assessment was made on the patient’s 
dominant side. For X-rays, patients were positioned supine while maintaining full extension of their 
knees, with the position fastened with the aid of a wooden block stabilizer. While the authors27 found 
a significant relationship between Q-angles obtained using both a goniometer and X-ray imaging 
(r=0.91, p=0.001), the difference between the goniometer and X-ray assessment was non-significant, 
only 0.1°.

In earlier studies, Roush et al28 challenged the accuracy of goniometer-based assessment against 
a gold standard computer-based assessment (IMAGEJ by US NIH) to reduce the SEM. Indeed, they 
observed that the SEM for standard Q-angle measurements reported across literature was 2.4°, which 
equates to an increase or decrease of the lateral force by 2.9 kilograms for an individual whose quad-
riceps are generating more than 68 kilograms of force. To achieve greater accuracy, they compared 
the goniometer-based measurement error for Q-angle (patients in standing position) with comput-
er-based assessment28. The ICC was 0.95 (SEM 1.05°) for goniometer-assessed QA and 0.89 (SEM 
2.06°) for the computer-based method. 

Finally, Merchant et al13 suggested improving measurement by eliminating patient-related factors 
(positioning and quadriceps contraction or relaxation) from their goniometric measurement, which 
contribute to the Q-angle variability they had observed across operators and studies13. Measurements 
were made on a pool of patients without a history of knee problems or a family history of dislocating 
kneecaps. The mean static Q-angle was 14.8° (≈15°), 95% CI: ±5.4°; the male mean was 13.5°, 95% CI: 
±5.2° and the female mean was 15.9°, 95% CI: ±4.8°. No significant difference was found between the 
right and left knees of males (p=0.52), nor of females (p=0.62), Beta=0.14. The 2.4° difference be-
tween male and female was due to the average height difference between men and women13.

Factors Affecting the Identification of Reference Points

The closer assessment of mean errors in our study points to several factors that contribute to the 
predictive accuracy of the reference points. These include both clinical factors (such as pediatric 
patients featuring open tibial and femoral growth cartilages and subluxated patella of the knee, 
patients with fixation devices) as well as procedure-related ones (patient positioning during radio-
graphic examination). 

In reference to the clinical factors, the heterogeneity of our sample, which included X-rays from 
patients with a variety of clinical characteristics, is noteworthy. In our study, radiographs from pe-
diatric patients (age range 3-14 years) accounted for 52 of the total 187 in the sample. The inclusion 
of X-rays from this age group allowed us to have a representative sample for the patient population 
undergoing knee joint function assessments in our hospital. Moreover, it allowed a heterogeneous 
dataset for training and testing, which increased the algorithms’ robustness, obtaining a model that 
can be used across multiple clinical practice scenarios. Indeed, it is acknowledged that in patients 
under the age of 14, the increase in Q-angle above the upper value correlates with a misalignment 
of the knee extensor apparatus in pediatric patients with knee ligament hyperlaxity and patellar in-
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stability29. Generally, this feature appears to be associated with a higher rate of lower-limb injuries 
in young athletes with a risk factor for anterior cruciate ligament (ACL) injury in young female ath-
letes30,31. However, values observed in pediatric patients tend to eventually return to typical values 
with growth. Frequently, extreme values are indices of pathologies such as chondromalacia and pa-
tellar luxation that affect the pediatric population32. Hence, including radiographs from this patient 
group will allow us to validate the algorithm in this class of patients as well.

Along the same line, the inclusion of radiographs from adult patients with specific orthopedic con-
ditions allowed us to train the models and strengthen their predictive accuracy. This aspect could also 
be of future interest in terms of the early detection of signs that require the attention of orthopedics. 

Strengths and Limitations

While including a heterogeneous population represents a strength in our methodological approach, 
we are aware of some limitations affecting the study. Indeed, one is the relatively small sample of 
radiographs, which will need to be expanded as the algorithm undergoes further fine-tuning. Similar 
studies generally involve a larger sample, up to ten thousand radiographs. However, given this is a 
proof of concept, this was not deemed necessary.

Other limitations of the study may be procedure-related biases, both operator-dependant and 
patient-dependant ones. With specific reference to operator-dependant biases, we may hypothe-
size this has been a weighing factor in the higher mean errors obtained for the tibial tuberosity with 
both WLR and BB models. This may be linked to the lack of a distinguishing anatomical feature that 
prevents the operator from univocally identifying this spot. Indeed, this is acknowledged as a com-
mon source of error26. Perhaps this could be overcome through the arbitrary identification of a tibial 
height from which, moving into the central third of the tibial metaphysis, the operator could define 
an almost standard TT. 

On the other hand, accuracy could also be addressed through multiple measurements. The lack of 
measurements by different operators or by the same operator at different time points in our study 
prevented us from defining inter- and intra-rater reliability. Measurement by several operators would 
indeed allow for greater sensitivity and specificity (for example, having measurements by three inde-
pendent operators).

Finally, one last limitation and area of future research lies in the reduced hyperparameter tuning 
campaign conducted for the WLR and BB models. A more extensive optimization of the hyperparam-
eters could potentially lead to improved and more robust results, enhancing the performance and 
reliability of the models.

CONCLUSIONS

This proof-of-concept study supports the use of an AI-driven automatic algorithm in the identification 
of the key points for Q-angle measurement directly from the patient’s radiographs. Results demon-
strate the highest reliability with the bounding box approach and the ability of the algorithm to cor-
rectly identify key points across a heterogeneous patient population.
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